
SFA Modernization Partner
United States Department of Education
Student Financial Assistance

Integration Application and Technical
Architecture Standards

Task Order #4
Deliverable #4.1.5

April 5, 2000

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

2 April 5, 2000

Table of Contents

1 Introduction ___ 3

1.1 Overview ___ 3

2 General Items ___ 4

2.1 Administration __ 4

2.2 Object names__ 4

2.3 Defaults __ 5

3 MQ Network Structure ___ 8

3.1 Queue managers ___ 8
3.1.1 Default Queue Manager ___ 10

3.2 Dead Letter Queue __ 10

3.3 Queue Manager Clusters___ 11

3.4 Channels __ 11
3.4.1 Transmission queue __ 12
3.4.2 Message channels__ 14
3.4.3 Client Connections ___ 14

4 Applications ___ 16

4.1 Queues __ 16
4.1.1 Names ___ 16
4.1.2 Versions__ 17
4.1.3 Reply queue___ 18
4.1.4 Dynamic Queues___ 18
4.1.5 Namelists __ 19
4.1.6 MQSeries Integrator __ 19
4.1.7 Queues for Bridges and Links __ 19

4.2 Triggering ___ 20
4.2.1 Process___ 20
4.2.2 Initiation Queue ___ 20
4.2.3 Trigger control___ 21

5 Additional information __ 22
5.1.1 References __ 22

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

3 April 5, 2000

1 Introduction

This document is intended for use by Management, Systems Administrators, Application
Developers, Standards Committees, and any others that will support MQSeries networks or
design MQSeries applications. It is designed to provide a common base from which all MQSeries
standards can be developed.

Its intended benefits are as follows:

§ Consistency in applications and administration processes
§ Maximum availability of applications
§ Avoiding common mistakes made by beginners
§ Assistance to those in the early stages of becoming MQSeries experts
§ General assurance of a smooth start for successful MQSeries projects

1.1 Overview

General Items
Provides a general introduction to the MQ Series standards. There are some basic
recommendations that apply for any MQSeries implementation. This section covers MQSeries
defaults as well as general naming standards.

MQ Network Structure
As the use of MQSeries grows in the technical environment, it is helpful to consider the MQSeries
Network Structure separately from the applications. The network structure is the collection of
queue managers and the connections between them. These components do not necessarily have
any knowledge of the applications they support. They are able to support multiple applications,
or run additional applications without modification.

Applications
The general goal behind the application recommendations is to make applications transparent to
the MQ network structure. They do depend on MQSeries for message delivery, but the
application specific configuration does not have to depend on how that structure is implemented.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

4 April 5, 2000

2 General Items

A key element of success in using MQSeries is to plan ahead, and one important aspect of this
consists of adopting a set of workable standards and conventions. The aim of this document is to
address these standards and conventions.

This document, which is based on the MQSeries SupportPac MD01, intends to recommend
standards and guidelines regarding MQSeries. This will allow the capabilities of MQSeries to be
leveraged in the way it was designed.

The recommendations that follow have been built upon previous implementation experience with
MQSeries. These standards and guidelines should be augmented by adding additional standards
as needed.

2.1 Administration

q Identify the MQSeries Administrator
Identification of an MQSeries Administrator to monitor the MQSeries environment is critical for
adherence to the standards and guidelines identified within the organization. Specifically,

• A single MQSeries Administrator (or a small team dividing the responsibilities for
mainframe and distributed platforms) should be part of the IT organizational structure

• The MQSeries Administrator needs to have had appropriate MQSeries training.
Ideally, the MQSeries Administrator should be an IBM Certified Specialist in MQSeries.

• The MQSeries Administrator(s) will also need to work in conjunction with security and
network administrators.

• Information about MQSeries education and the Certification program can be found on
the MQSeries web site.

The key point is that the role is identified as soon as possible.

2.2 Object names

All MQSeries names should follow MQSeries naming conventions, rather than the standard for
object names on each supported platform. Key standards and guidelines:

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

5 April 5, 2000

q Don’t use lower case letters
MQSeries allows both upper and lower case letters in its names. However, MQSeries
names are case-sensitive . Using lower and upper case characters for object names is a
common source for naming errors.

q Don’t use % in names
This character is valid in all MQSeries names, although it is not commonly used in other
names across platforms.

q Choose meaningful names within the constraint of the standard
Using meaningful names aids the MQSeries Administrator in maintaining the MQSeries
environment

There is no implied structure, or hierarchy, in an object name, such as you might find on
many systems' file names. MQSeries just compares the name strings.

These standards do recommend using hierarchical names under certain conditions. One
such example is to use a suffix where there are multiple “versions” of an object.

q Document object names and always include a description
All objects have a DESCR attribute for this purpose. MQSeries takes no action on the
value, but it provides additional information as to the function of the queue.

q Save the definitions
There are a number of reasons for saving the definitions:

• In the case of a system failure objects may need to be recreated. To perform this
function, the definitions need to be saved separately from the queue manager.

• They can be used to reset the attributes to a known state. For example if triggering
has been turned off, or GET or PUT disabled, it is helpful to be able to restore the
objects to their initial state.

• The definitions can supplement the MQSeries documentation.

2.3 Defaults

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

6 April 5, 2000

q Ideally leave defaults unchanged
MQSeries generally keeps attribute defaults in standard objects, 'SYSTEM.DEFAULT.*'.
When an object is defined, MQ takes any unspecified attributes from the corresponding
default object.

The original intent of this approach was to support users who wanted to have different
defaults. The various platforms supply these defaults in different ways.

• MQSeries for MVS/ESA provides a script which can serve as the “Initialization
Input Data Set” in the queue manager JCL.

• MQ Series Version 5 (for NT and UNIX) implementations create the standard
default objects automatically when a queue manager is created.

A general rule of thumb is to accept MQSeries defaults unless there is a good reason to
change them.

q If you must change defaults, use a Customization file
Don't change the supplied script, changes are lost if there is a subsequent product update.

The recommended approach is to have a separate Customization file and use ALTER
commands to set a new value for the identified attribute

q Use the customization file for Queue Manager attributes
Some queue characteristics are configured when a queue manager is created, and can not
be changed after the initial configuration.

Specifying queue manager attributes in a Customization file, in addition to being easier to
manage, provides a direct way for all the values to be returned to a known state.

§ Example 1, on an MVS queue manager:

§ Example 2, on one of several UNIX systems connected to that MVS queue

ALTER QMGR +

 DESCR(‘Queue manager = MARS’) +

 DEADQ(‘SYSTEM.DEAD.LETTER.QUEUE’)

ALTER QMGR +

 DESCR(‘Queue manager = JUPITER4’) +

 DEADQ(‘SYSTEM.DEAD.LETTER.QUEUE’) +

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

7 April 5, 2000

manager:

q Use templates for default classes
Objects are defined with reference to a known Defaults object (a template object). Identify
these clearly by using “TEMPLATE” as part of the name.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

8 April 5, 2000

3 MQ Network Structure

3.1 Queue managers

q Assign unique names to all queue managers

This recommendation can often cause significant problems if queue manager names are
not unique. (On MVS, the queue manager name must also be distinct from other
subsystem names on the same system.)

A queue manager can be understood as a “container” for queues and related objects.
There is typically one per system, but additional queue managers can be defined.

Queue Managers with the same name can be configured to exchange messages - by using
Queue Manager aliases. This is strongly discouraged. There are some examples where this
can lead to ambiguity, and messages can then be sent to the wrong queue manager.

§ If ReplyToQMgr is left blank in the Message Descriptor, MQSeries inserts the
actual local Queue Manager name, not its alias.

§ Dead Letter Queue messages identify the real Queue Manager, not any
alias.

q Don’t copy documentation examples
Copying the documentation examples provided with the installation files is an easy way to
produce queue managers with duplicate names. Plan for the names of queue managers
ahead of time.

q Keep the queue manager name short and meaningful
A recommendation would be to make queue manager names the same as the network host
name. However, keep the following points in mind:

§ On MVS, the queue name has to be the same as the host name. The queue
manager name corresponds to the MVS subsystem name. Therefore, the queue
manager name is restricted to 4 characters.

§ Many queue managers use the first 8 characters when generating unique
message identifiers.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

9 April 5, 2000

§ Channel names, which by convention are derived from queue manager names,
are limited to 20 characters.

If there is no obvious name, most users would adopt a convention for constructing a
queue manager name. Make sure that the convention provides for further expansion,
particularly where the restricted names on MVS are concerned.

Some naming examples are illustrated below. A numeric identifier may be appropriate
where a processor (or hardware cluster) has multiple queue managers.

§ Example: CCCDDFNN
CCC = city identifier
DD = company division
F = queue manager function (e.g. Test)
NN = numeric identifier

§ Example: SSSCCFNN
SSS = stock ticker symbol
CC = city identifier
F = queue manager function
NN = numeric identifier

§ MVS Example: ADDX
A = geographic area
DD = company division
X = distinguishing identifier

q For a Queue Manager alias, add a suffix to the name

The main use for this would be to support classes of service. There are fewer constraints
on the length of an alias name; it can be more than eight (or four on MVS) characters for
example.

In fact this feature is usually related to defining multiple channels between a pair of queue
managers. In this case, use the same suffix for associated channels and queue manager
aliases.

§ Example 3, the UNIX queue manager in Example 2 needs an alias so it can
receive very large reply messages on a separate channel.

DEFINE QREMOTE(‘JUPITER4_XL’) REPLACE +

 DESCR(‘Queue manager alias for very big messages’)

+

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

10 April 5, 2000

3.1.1 Default Queue Manager

q Don’t identify any single Queue Manager as the default
Some environments can tolerate an exception, most notably CICS/ESA, where any CICS
region is always connected to a single Queue Manager.

Most platforms can have more than one queue manager defined on a system. Don't pick
one as the default, as this often results in selecting the wrong queue manager on a
particular system.

Even when there is only one queue manager configured, don't define it as the default.
Doing so increases the probability for error if another queue manager should be added at a
later date.

q Pass the connection name as program parameter
This allows a program to run unchanged on any Queue Manager. This provides the
capability for multiple concurrent instances; or a queue driven application could be moved
to a different queue manager without impacting the application code.

3.2 Dead Letter Queue

If MQSeries can detect an error synchronously, it is reported directly to the application; if a
message can not be delivered synchronously, it is a candidate for the Dead Letter Queue.
The Dead Letter Queue preserves a message that can not be processed immediately
without stopping valid messages in the meantime.

q Include a Dead Letter Queue on all queue managers
On all queue managers, use a local queue called SYSTEM.DEAD.LETTER.QUEUE.

This queue is created automatically on some MQSeries platforms. On those platforms
where the queue is not automatically generated, create a queue with this same name. It
will cause less confusion to use a common name for the dead letter queue across all
platforms.

Note: It is still necessary to configure the queue manager, by identifying this queue in
its DEADQ attribute.

If a Dead Letter Queue is required, and is not available, a channel will fail.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

11 April 5, 2000

q Process undelivered messages
Messages that are put on the Dead Letter Queue take the form of the original message
data, preceded by a dead letter header - defined by the MQDLH structure. The header
includes the intended destination queue and queue manager for the message, and the
reason the message could not be delivered.

The production environment must have a process (triggered or scheduled at intervals) to
dispose of undelivered messages in the Dead Letter Queue. Some platforms supply a Dead
Letter Queue Handler (a rules driven application to manage dead letter messages). Other
platforms will require development of a program for this purpose. To handle the dead
letters:

• Construct rules based on queue names, message type, feedback code, etc. It can
be appropriate in some cases to retry or discard certain messages

• Otherwise, transfer the undelivered message to an application queue to allow
the application to process the message

3.3 Queue Manager Clusters

This facility allows a name to be given to a collection of queue managers, and was introduced in
MQSeries Version 5 for AIX, HP-UX, OS/2, Sun Solaris and Windows NT; and MQSeries for
OS/390 Version 2.1. It simplifies administration by providing a single system image, and it
supports dynamic workload balancing.

q Choose a unique cluster name that describes its function
Cluster names are not restricted to short names (like queue managers), nor is it required to
state in the name that it is a cluster. The recommendation is to name clusters with a
descriptive name, and add a suffix if there is a requirement for multiple overlapping
clusters.

3.4 Channels

MQSeries automatically defines the internal channel connections and transmission queue within a
cluster. However, transmission queues and internal channel connection names can be modified
after the channels are created.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

12 April 5, 2000

3.4.1 Transmission queue

q Use exactly the same name as the destination queue manager
MQSeries will select the transmission queue name in the absence of other information.
Note you can not rely on there being a QREMOTE attribute to define a transmission queue
in all cases. An example of this is a message to a Reply Queue, which will only have a
destination Queue Manager name from which to determine routing of the message.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

13 April 5, 2000

§ Example 4, the UNIX queue manager in Example 2 needs a transmission
queue to access the MVS hub queue manager.

q If there is more than one channel, add a suffix
The recommended standard is to specify your queue manager alias as the ReplyToQMgr.
The remote system will use that attribute as the transmission queue for its reply.

Use the same suffix for a transmission queue and its destination Queue Manager alias

§ Example 5, the same UNIX queue manager has a separate channel to
send large messages.

q Be careful using the default transmission queue
This feature is not available on all platforms. On platforms where it is supported, it is a
convenient way to avoid having to define a transmission queue (and channel) for all
possible destinations.

Default transmission queues are particularly useful for end point nodes in an MQSeries
network.

A configuration to be aware of and avoided is a loop of default transmission queues.
MQSeries does not detect this situation, and continues to forward the messages in an
infinite loop.

DEFINE QLOCAL(‘MARS’) REPLACE +

 DESCR(‘Transmission queue, sending to MARS’) +

 USAGE(XMITQ) TRIGGER +

 INITQ(‘SYSTEM.CHANNEL.INITQ’) +

 TRIGDATA(‘MARS’)

DEFINE QLOCAL(‘MARS_XL’) REPLACE +

 DESCR(‘Transmission queue, big messages to MARS’) +

 USAGE(XMITQ) TRIGGER +

 INITQ(‘SYSTEM.CHANNEL.INITQ’) +

 TRIGDATA(‘MARS_XL’)

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

14 April 5, 2000

q Make triggering standard for a Sender channel
Configure all transmission queues for triggering. To do this the Channel Initiator will need
to be started. Triggering standards requirements include:

§ Always use trigger type FIRST, and TRIGMPRI(0).

§ On MQSeries Version 5 (NT and UNIX) platforms, the corresponding channel
name is specified as Trigger Data. Configure Process object as instructed in the
installation documentation.

§ Use the supplied Initiation Queue name, 'SYSTEM.CHANNEL.INITQ'

A Requester channel is intended to initiate message transfer from the destination system.
As a result, the corresponding Server channel does not need to be triggered.

3.4.2 Message channels

q Name a channel the same as the destination queue manager
This means a queue manager only needs one Receiver channel defined, no matter how
many queue managers will send messages to it. Each adjacent source queue manager
needs a Sender channel and a transmission queue – all matching the name of the
destination queue manager.

This scenario can be generalized to multiple channels, where the transmission queue and
channel would match the receiving queue manager alias – i.e., they all have the same
suffix.

The same convention applies to dynamic channels, introduced in MQSeries Version 5. If a
sender channel is started, and the corresponding Receiver channel has not been defined,
the Receiver is created automatically.

q Include the transport type if it adds value
Where queue manager are found in a mixed network, is it helpful to indicate the network
protocol in the naming convention. If this is needed, make the transport distinction
evident in the class of service suffix; for example 'JUPITER4_SNA'.

3.4.3 Client Connections

q Don’t create a channel for each separate client

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

15 April 5, 2000

Defining a separate channel for each client represents unnecessary effort.

Use the same name, 'CLIENTS', on all queue managers. If multiple connections have to be
configured, such as different transport types, add a suffix to this name.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

16 April 5, 2000

4 Applications

These recommendations assumes an MQSeries infrastructure is in place, such as that described in
the previous section. The goal here is to make application code transparent to any configuration
changes.

4.1 Queues

4.1.1 Names

q Name a queue to describe its function
A message driven application provides some service. In addition, exclude unrelated
information from the name.

q Use hierarchical names for application queues
The form that is often recommended is as follows.

<application>.<function>

MQSeries uses the prefix 'SYSTEM.*' for objects it delivers. It is recommended that this
prefix is not used for application-related queues.

Using a prefix to group related queues simplifies MQSeries administration in the following
areas:

§ inquiries about queues
§ MVS security administration
§ Dead Letter Queue handler

In a larger application, it can be appropriate to adopt a naming hierarchy. For example,

<system>.<application>.<function>.<sub-function>

q Don’t include the Queue Manager name
MQSeries generally identifies a queue by a pair of names, the queue name itself and the
containing queue manager. Including the queue manager as part of a queue name is
redundant and may lead to additional queue management complexities.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

17 April 5, 2000

Where an application is rolled out over multiple nodes there is no need to invent a new
queue name for each instance.

q Don’t include the queue type in the name
MQSeries administration makes queue types transparent to applications. The queue type
should not be visible in the queue name. If the queue type is changed, then the queue
name does not have to be changed as well.

q Pass the name of the input queue by parameter
Each application needs a QLOCAL (local queue) to provide its input. Generalize the
application code by passing the queue name as parameter. Multiple instances of an
application can use different local queues, without having to change the code.

Note that programs that are triggered will follow this standard by default—the local queue
name is part of the trigger parameter.

4.1.2 Versions

q Indicate queue versions by a suffix on a local queue
There may be occasions when multiple versions of a queue exist at the same time. Reasons
for multiple versions include different versions of the function driven by the queue or the
application may assign a different local queue based on the time of day.

Indicate the version in the form of a suffix on a local queue name. Examples include:

<application>.<function>_TEST
<application>.<function>_V2.1
<application>.<function>_THURSDAY

Using the queue name as a parameter will ensure transparency to the application code.

q Use a queue alias to PUT messages to the right queue version
Using queue aliases is particularly useful when a message is PUT to a queue to request a
service. The choice of the correct version of the local queue should not be the responsibility
of the requesting program.

Use the same queue name across all platforms to PUT messages.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

18 April 5, 2000

Define the queue alias as QALIAS or QREMOTE as appropriate. Do not include the queue
type in the name.

If you have a Directory service, use a QALIAS with SCOPE(CELL) instead.

4.1.3 Reply queue

q The recommended naming convention is <application>.REPLY
 This fits in with the hierarchy convention described in previous sections.

Do not include the queue type (QM or QL) in the reply queue name. This is an aspect of
the configuration that could vary, such as for performance tuning.

There are various application approaches to processing a reply queue which imply
different queue types.

4.1.4 Dynamic Queues

When MQSeries creates a dynamic queue, the first part of the resulting queue name can be
controlled through the Object Descriptor. The appropriate name standard depends on the type of
dynamic queue created.

q Temporary Queues – accept the MQSeries default
The MQSeries default for a dynamic queue prefix is 'CSQ.*' on MVS and 'AMQ.*' on other
systems. Since temporary dynamic queues are deleted on MQCLOSE, they will not have
to be controlled by the MQSeries Administrator so it is recommended that the default is left
unchanged.

q Permanent Queues – supply an application prefix
A permanent dynamic queue can remain across application invocations. It may need to be
managed by an MQSeries Administrator, so ensure the queue name follows the
hierarchical naming convention. Specify an application prefix in
MQOD.DynamicQName, followed by an asterisk.

Note that this application prefix must not exceed 32 characters, so that MQSeries can
generate a unique name with the remaining characters.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

19 April 5, 2000

4.1.5 Namelists

Originally only a function of MQSeries for MVS/ESA, it is now available across the Version 5.1
(NT and UNIX) platforms. With the addition of distribution list support on OS/390, namelists are
now a cross-platform facility to maintain a list of queues in MQSeries storage, and for programs to
send a message to all queues with one MQPUT.

q Use a hierarchical naming convention
Don't indicate in the name that it is a Namelist. Namelists have a separate name space , so
the identification of a namelist is completely clear from the context of the message.

4.1.6 MQSeries Integrator

MQSeries has now been enhanced with enterprise application integration (EAI) functionality.
MQSeries Integrator supplies rules-driven routing and data transformation , which simplifies the
task of integrating diverse applications across the enterprise. MQSeries Publish and Subscribe
supports routing of topic-based messages to dynamic subscribers based upon the content of the
message. These two facilities are compatible, and can be used to construct complex messages and
routing based on business logic.

The same general principles can also be used when naming queues associated with these
functions:

• Subscriber queues are in fact application input queues, so application naming standards
apply to these queues.

• MQSeries Integrator has input queues, which can be given a hierarchical name – just as if
the EAI tool was an application, and provides the first part of the queue name.

4.1.7 Queues for Bridges and Links

q Include the bridge or link type in the application hierarchy

For example,
<application>.MVS
<application>.CICS
<application>.ORCL

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

20 April 5, 2000

4.2 Triggering

Triggering in not required in all cases. Programs can be scheduled based on demand, time of day,
or as part of the system startup procedures.

4.2.1 Process

q If a queue has its own Process, use the same name as the queue

Include the version suffix of the queue if appropriate. There may be a separate executable
process for each instance of the queue.

Note that Processes have an independent name space. As a result, there is no value
including the fact it is a PROCESS as part of the name.

q If a Process is shared, describe the collective function
Where several queues are handled by a common program, define a single Process object.
Use a suitable hierarchical name for the collective function.

If multiple versions of a queue are read by the same program, drop the version suffix from
the queue name.

q Use Environment Data as a parameter to the trigger monitor
It is especially important if the Trigger Monitors are custom developed.

User Data is intended to be used as parameter information to the triggered program.
Trigger Data also provides parameter information that is specific to one queue.

Some supplied trigger monitors do not use this information. On UNIX, a value of '&'
causes the program to be triggered as an asynchronous process.

4.2.2 Initiation Queue

q Use system defined queues for simple general triggering

Some platforms define standard initiation queues when a queue manager is created.
Below are the defaults for trigger monitors:

 SYSTEM.DEFAULT.INITIATION.QUEUE
 SYSTEM.CICS.INITIATION.QUEUE

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

21 April 5, 2000

q Otherwise use a hierarchical name
A reasonable approach may be to have an initiation queue for the various functions in an
application. The recommendation is to use a queue name of the form,

<application>.INITQ

q Hint – to stop any trigger monitor, disable GET for its INITQ

Trigger monitors are designed to run for long periods of time. They stop only when
MQSeries is shut down, or when the trigger monitor task is cancelled by an operator.

MQSeries for MVS/ESA provides an interface to stop its CICS Task Initiator function
without disrupting other operations.

4.2.3 Trigger control

q For temporary disabling triggers, use the NOTRIGGER parameter
The function of this parameter is to suspend triggering temporarily in an application. Use
trigger type NONE for a queue that will never be triggered.

q Avoid trigger type DEPTH
The original intent of this feature was to support consolidation of replies to related parallel
requests. The reply queue for the set of related messages would be a permanent dynamic
queue, triggered when all the replies had arrived.

The problem with this type of triggering is that triggering is disabled after the trigger
occurs. There is no automatic re-triggering if all the messages are not processed.

Never use trigger type DEPTH to monitor a queue threshold. Use Performance Event
messages.

q Avoid trigger type EVERY
Problems occur with this trigger type when a system is re-started and there are several
messages recovered on a queue. Only one trigger will be initiated, no matter how many
messages are on the queue. The preferred approach is to use trigger type FIRST, and
modify the application to continue processing additional messages.

US Department of Education Integration Architecture Standards
Student Financial Assistance
SFA Modernization Partner

22 April 5, 2000

5 Additional information

5.1.1 References

v MQSeries home page, http://www.software.ibm.com/ts/mqseries/

v SupportPac MD01: MQSeries – Standards and conventions,
 http://www.software.ibm.com/ts/mqseries/txppacs/md01.html

v MQSeries Planning Guide, GC33-1349

v MQSeries Intercommunication, SC33-1872

v MQSeries Command Reference, SC33-1369

v MQSeries Queue Manager Clusters, SC34-5349

